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Abstract 

Massive amounts of spatial and temporal information data are gathered and amassed as the variety of positioning 

sensors and location-based devices grows. By joining the data points in a chronological order, these data—which 

include movement information for any moving object—are expressed as trajectory data. In particular, this study 

uses vehicle trajectory data from the urban traffic network to explore the prediction of urban vehicle trajectories. 

Recurrent neural network model for urban vehicle trajectory prediction is proposed in the earlier work. In this 

work, we present the Attention-based Recurrent Neural Network model for urban vehicle trajectory prediction as 

a means of further improving the model. The attention mechanism in this suggested model is used to incorporate 

network traffic state data into the trajectory prediction of urban vehicles. The Bluetooth data that was gathered in 

Brisbane, Australia, which incorporates private vehicle movement information, is used to assess the model. Five 

metrics are used to assess the model's performance: BLEU-1, BLEU-2, BLEU-3, BLEU-4, and METEOR. The 

outcome demonstrates that the ARNN model performs better than the RNN model. 

Keywords: Vehicle Trajectory; Trajectory Prediction; Recurrent Neural Network; Attention Mechanism; Network 

Traffic State 

1. Introduction 

Trajectory data, which is a large amount of location 
data acquired with different location sensors and 
location-aware gadgets, is researched. An object's 
trajectory is a record of its movement across space. 
A location sequence arranged chronologically serves 
as a representation of this. We concentrate on one 
kind of trajectory data in our study: data on urban 
vehicles. One kind of trajectory data that depicts the 
motions of vehicles in urban networks is the urban  

 

vehicle trajectory data. This data provides options for 
comprehending urban traffic network movement 
patterns by providing a wealth of information 
regarding aggregate flows and disaggregate travel 
behaviors, including user-centric traffic experiences 
and system-wide mobility patterns. 

This work focuses on the trajectory-based location 

prediction problem, one of the many uses of 

trajectory data mining This problem involves 

predicting future locations destinations and the 

occurrence of traffic-related events like incidents and 

traffic jams by analyzing a large amount of vehicle 

and pedestrian trajectories moving through a city. In  

 

this work, we tackle the task of forecasting the order 

in which the vehicle under study will visit the next 

locations, given the prior locations from the current 

trip's starting point and a historical database that 

depicts patterns of urban mobility. 

 

A method for predicting a vehicle's next location 

using a Recurrent Neural Network (RNN) model was 

presented in the previous study. Neural network 

models, such as RNN, are frequently employed in 

natural language processing. In the prior study, we 

elucidated the similarities between trajectory-based 

location prediction and text generation, and we 

implemented the RNN model for trajectory-based 

location prediction. The only input for the RNN 

model was the location data from previous visits. 

Despite having a straightforward structure, the RNN-

based location prediction model yielded positive 

outcomes. For instance, for over 50% of all tested 

trajectory samples, the probability of correctly 

predicting the vehicle's next location was greater 
than 0.7, whereas the base case model only 
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demonstrated accuracy for less than 5% of the 

samples. 

This work proposes a novel methodology to improve 

location prediction accuracy using an existing RNN 

model. The additional input allows heterogeneous 

input sources to be incorporated into the predictions. 

As a particular study input, we took into account the 

traffic conditions of the urban traffic network at the 

beginning of the trip. These days, drivers can use a 

variety of traffic information and routing services to 

choose their route and observe the current traffic 

situation in urban traffic networks. As a result, at the 

beginning of their trip, traffic conditions in networks 

are anticipated to have an impact on each vehicle's 

route. This study proposes an attention-based RNN 

model for location sequence prediction based on this 

concept, which allows the RNN model to take traffic 

conditions into account as an extra input. The 

Methodology section contains a thorough 

explanation. 

2.  Methodology 
The representation of a vehicle trajectory, consisting 
of l longitude (x) and latitude (y) data points, is Tr = 
[(x1, y1), (x2, y2), (xl, yl)]. If the urban traffic 
network is divided into multiple cells (ci, i ∈ 1,, m), 
the vehicle trajectory, Tr, can be represented as a 
series of cells ([c1, c2,, cm]). The length of the cell 
sequence, m, is always less than or equal to the length 
of the original trajectory sequence, l, because each 
cell can cover multiple data points (i.e., m ≤ l). 

 

                                           Fig. 1. Representing urban 

vehicle trajctory as cell sequence 

 

Fig. 2. Structure of the proposed Attention-

based Recurrent Neural Network model 

(ARNN) for cell sequence prediction 

To indicate the beginning and end of the journey, two 

virtual tokens, #start and #end, are added to the front 

and back of each cell sequence. To facilitate RNN 

training, validation, and testing, this cell sequence is 

divided into two input vector parts, X and Y. 

X = [X0, X1, X2, ..., Xm] ≡ [#start, c1, c2, 

..., cm] 

Y = [Y0, Y1, Y2, ..., Ym] ≡ [c1, c2, ..., 

cm, #end] 

RNN model for predicting cell sequence was created 

and assessed in a prior study [16], however it is not 

an easy task to add more inputs to an RNN model. 

When additional input is sequential data, adding 

another sequence input can be done with a simple 

extension because the RNN model is well-suited for 

processing sequential data that takes dependencies 

across time or sequence steps into consideration. In 

order to combine multiple sequence inputs and 

compute the output, an RNN model can have 

multiple input layers and different hidden features. If 

not, processing outside of the RNN model is 

required. As an additional input, we will use non-

sequential traffic state information. Consequently, in 

order to include this non-sequential traffic state 

information, an extra structure is required. 

One solution to this problem is to use the attention 

mechanism. As seen in Fig. 1, the attention 

mechanism serves as an interface between 

information that has been processed externally and 

sequential inputs that are processed inside the RNN 

model. Since its introduction, this neural network 

mechanism has greatly improved the performance of 

applications like machine language translation [18] 

and video captioning . It was originally designed to 

mimic the attention mechanism found in the human 

brain. Specific portions of the network traffic state 

input can be the focus of the attention mechanism-

based cell sequence generator or cell sequence 

prediction model, which uses the information for cell 

sequence generation. Setting the RNN's initial state 
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and providing network-wide traffic state information 

at each cell generation step are the two tasks assigned 

to the attention mechanism. Typically, the RNN 

cell's initial state vector is set to zero because the 

RNN model's basic form contains no additional 

inputs. Nevertheless, the model ought to incorporate 

the extra network traffic state data that ARNN 

provides. Furthermore, by computing attention 

weights and the context vector, the attention 

mechanism enables the RNN to take traffic state into 

account at each prediction step. 

Through a variety of traffic information and routing 

services, drivers can easily find out the current traffic 

situation in urban traffic networks and plan their 

route [17, 20]. When route B is congested, for 

instance, a driver is more likely to choose route A, 

and vice versa. Therefore, it is anticipated that the 

network traffic conditions at the start of each 

vehicle's journey will have an impact on its location 

sequences, or chosen routes. To improve the 

prediction accuracy of the RNN-based cell sequence 

prediction model, it is thus desirable to include 

network-wide traffic state information and route 

choice behavior based on the current traffic state. 

The Attention-based Recurrent Neural Network 

(ARNN) model for cell sequence prediction is 

depicted in Fig. 2. This model takes two types of 

input data: network traffic state data, which is the 

first type, and the second is the vehicle trajectory data 

represented in cell sequence. The model computes 

the RNN unit's initial state (s−1) after processing the 

state of the network traffic as of right now. Next, 

using the previous state vector as a basis, the 

attention interface computes the context vector (Ci). 

The ith RNN unit receives the context vector (Ci) as 

input and updates the current state vector (si) with the 

corresponding input vector element (Xi). Based on 

the context vector and previous state vector (α i, j) = 

f (C, s i 1)), the attention weight α(i, j) is computed. 

The likelihood of attending to the jth cell at the ith 

sequence is represented by the attention weight. 

Consequently, 1 (∀ j α(i, j) = 1) is the sum of α(i, j) 

at each sequence. 

To represent the hidden characteristics of the cells, 

the word-embedding method is applied to the 

processing of the input cell sequence (X). During the 

training phase, each RNN unit uses input vector X as 

a direct input to determine the output vector (Yˆi). 

Only the front n cell sequence elements are utilized 

directly in the testing phase, though. Next, we use a 

random sampling based on the multinomial 

distribution with probability Yˆi to extract the next 

cell, which is also used as the next element of the 

input vector, since the output vector indicates the 

likelihood of each cell being visited. 

A basic Long Short Term Memory (LSTM) cell is 

used as RNN cell. And the model also uses the Adam 

 optimizer to update the model parameters. 

3. Model Performance Evaluation 

   Data 

   Urban Vehicle Trajectory Data 

The Queensland Department of Transport and Main 

Roads (TMR) and Brisbane City Council (BCC) 

provided the Bluetooth sensors in Brisbane, 

Australia, which collected the vehicle trajectory data 

used in this study. The state-controlled roads and 

intersections within Brisbane City have Bluetooth 

sensors installed. These sensors are designed to 

identify and time the passage of Bluetooth devices, 

such as mobile phones and in-car navigation 

systems. Vehicle trajectories of individual vehicles 

can be constructed by joining data points that have 

the same Bluetooth device identifier (MAC ID). 

Every vehicle trajectory shows the locations of 

Bluetooth sensors that a subject vehicle passes in a 

time-ordered sequence. The corresponding vehicle's 

trip is deemed to have ended if it is stationary for 

more than an hour. We used the vehicle trajectory 

data that was gathered in March 2016 for this case 

study. A day's worth of trajectories equals about 

276,000, and in March 2016, 8,556,767 vehicle 

trajectories were gathered. 200,000 vehicle 

trajectories were sampled at random for the training 

dataset, 10,000 for the validation dataset (used in 

hyper-parameter searching), and 200,000 for the 

testing dataset. 

 

In order to apply the vehicle trajectory clustering and 

cell partitioning method suggested in earlier 

research, the Brisbane urban traffic network is 

divided into cells [23, 24]. The cells are intended to 

have a radius of 300 meters. Consequently, 5,712 

cells in total are produced. Out of them, 2,746 cells 

are regarded as active since, according to historical 

data on vehicle trajectories, no vehicle has visited the 



 
TECHNOINSIGHT • January-june • Volume 15 • Issue 1  

104 
 

remaining cells. After processing, the vehicle 

trajectory data are converted into cell sequence data. 

   Network Traflc State Data 

   The network traffic state can be represented in a 

number of ways, including by average speed and 

density. In this study, the network traffic state is 

represented by vehicle accumulation, which is 

defined as the cell density. By counting the number 

of vehicles within a cell at any one time, the vehicle 

accumulation for that cell can be approximated. We 

computed the vehicle accumulation of every cell at 

every minute by processing the vehicle trajectory 

data. By dividing the vehicle accumulation by the 

historical maximum number of vehicle accumulation 

in each cell, the vehicle accumulation data are 

normalized. 

 

4. Conclusion 

 

Building on earlier research, we suggested a novel 

method for integrating network traffic state data into 

urban vehicle trajectory prediction models. The 

network traffic state data was utilized for vehicle 

trajectory prediction using the attention mechanism, 

and the outcomes of the ARNN model were contrasted 

with those of the RNN model that was previously in 

use. Consequently, the ARNN model outperformed the 

RNN model. It has been verified that the attention 

mechanism, which establishes a structural connection 

between the network traffic state input and the RNN 

model, yields better vehicle path prediction. Notably, 

because ARNN took into account both the cells to be 

visited and the alignment of the cells in the sequence, 

it demonstrated a significant performance 

improvement in the METEOR score. As the original 

cell sequence lengthens, the performance improvement 

rates tend to fall and converge to 1. This issue needs to 

be investigated in order to maintain consistent 

performance gains for the ARNN model. 
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