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Abstract: Examine a two-dimensional unsteady Magneto hydro dynamics (MHD) free convection flow of viscous, 
incompressible, and electrically conducting fluid past a vertical plate in this paper while taking into account the Grashof, 
Modified Grashof, Prandtl, Schamidt, and Dufour numbers. The problem's governing equations, which comprise a system 
of coupled non-linear ordinary differential equations and a system of non-linear partial differential equations, are 
numerically solved using the widely used explicit finite difference approach. A widely utilized method for examining 
general nonlinear partial differential equations is the finite-difference method. Numerous areas of applied mathematics, 
including hydrodynamics, elasticity, and quantum physics, involve partial differential equations. Therefore, the purpose of 
the suggested study is to to investigate the numerical results which are performed for various physical parameters such as 
velocity profiles, temperature distribution and concentration profiles within the boundary layer are separately discussed in 
graphically. 
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Introduction 

MHD boundary layer flow has become significant 
applications in industrial manufacturing processes such as 
plasma studies, petroleum industries Magneto 
hydrodynamics power generator cooling of clear reactors, 
boundary layer control in aerodynamics. Many authors 
have studied the effects of magnetic field on mixed, 
natural and force convection heat and mass transfer 
problems. 

S. Idowu et al [1] studied the radiation effect on 
unsteady heat and mass transfer of MHD and dissipative 
fluid flow past a moving vertical porous plate with variable 
suction in the presence of heat generation and chemical 
reaction. M. S. Alam et al [2] studied the free convective 
heat and mass transfer flow past an inclined semi infinite 
heated surface of an electrically conducting and steady 
viscous incompressible fluid in the presence of a magnetic 
field and heat generation. Mohammad Shah Alam et al [3] 
mass transfer over an inclined stretching sheet in the 
presence of a uniform magnetic field. M. Umamaheswar et 
al and [4] reported an unsteady magneto hydrodynamic 
free convective, Visco-elastic, dissipative fluid flow 
embedded in porous medium bounded by an infinite 
inclined porous plate in the presence of heat source, P. R. 
Sharma et al [5] investigated the flow of a viscous 
incompressible electrically conducting fluid along a porous 

vertical isothermal non- conducting plate with variable 
suction and internal heat generation in the presence of  

 

transverse magnetic field. Hemant Poonia and R. C. 
Chaudhary [6] analyzed the heat and mass transfer effects 
on an unsteady two dimensional laminar mixed convective 
boundary layer flow of viscous, incompressible, electrically 
conducting fluid, along a vertical plate with suction, 
embedded in porous medium, in the presence of transverse 
magnetic field and the effects of the viscous dissipation. C. 
V. Ramana Kumari and N. Bhaskara Reddy [7] reported an 
analytical analysis of mass transfer effects of unsteady free 
convective flow past an infine vertical porous plate with 
variable suctionReddy et al [8]. K. Bhagya Lakshmi et al [9] 
investigated the hydromagnetic effects on the unsteady 
free convection flow, heat and mass transfer characteristics 
in a viscous, incompressible and electrically conducting fluid 
past an exponentially accelerated vertical plate and the 
heat due to viscous dissipationroll of magnetic field on 
ionized Magnetohydrodynamic fluid flow through an 
infinite rotating vertical porous plate with heat 
transfer.parallel porous plates under the influence of 
inclined magnetic field with heat transfer. Consider   the   
thermal   radiation   interaction   with unsteady MHD flow 
past rapidly moving plate has a great important 
application in   different   brance   of science and to the 
chemical engineering processes and in many   technological   
fields.   This   types   of   problems were studied by 
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Abdulwaheed Jimoh[16], Rasulalizadehand Alirezadarvish 
[17]. Numerical solution of MHD fluid flow past an infinite 
vertical porous plate was done by K. Anitha [18]. Takhar 
and Ram [19] studied the effects of Hall current on hydro-
magnetic free convective flow through a porous medium. 
Chaudhary and Sharma [20] have analytically analyzed the 
steady combined heat and mass transfer flow with induced 
magnetic field. The aim of this paper is to investigate 
numerically transient MHD combined heat and mass 
transfer by mixed convection flow over a continuously 
moving vertical porous plate under the action of strong 
magnetic field taking into account the induced magnetic 
field with constant heat and mass fluxes. The governing 
equations of the problem contain a system of partial 
differential equations which are transfomed by usual 
transformation into a non-dimensional system of partial 
coupled non-linear differential equations. The obtained 
non-similar partial differential equations will be 

1. Mathematical Model of the Flow 

MHD power generation system combined heat and 
mass transfer in natural convective flows on moving 
vertical porous plate with thermal diffusion is considered. 
Let, the x- axis is chosen along the porous plate in the 
direction of flow and the y-axis is normal to the plate. The 
MHD transfer flow under the action of a strong megnetic 
field. The form of the induced magnetic field is (𝐵𝑥, 𝐵𝑦, 0). 
Now the Maxwell’s equation is ❑. 𝐵 = 0so the megnatic 
field becomes 𝐵𝑦 = 𝐵0. 

Initially, consider that the plate as well as the fluid are 
at the same temperature (= 𝑇∞) and the concentration 
level 

(= 𝐶∞) everywhere in the fluid is same. Also it is 
assumed that the fluid and the plate is at rest after that 
the plate is to be moving with a constant velocity 𝑈0 in its 
own plane and instantaneously at time 𝑡 > 0, the 
temperature of the plate and the species concentration 
are raised  to 𝑇w(> 𝑇∞) and 
𝐶w(> 𝐶∞) respectively, which are thereafter maintained 
constant, where 𝑇w , 𝐶w are the temperature and species 
concentration at the wall and 𝑇∞, 𝐶∞ are the temperature 
and concentration of the species far away from the plate 
respectively. 

The physical model of this study is furnished in the 
following figure. 

 

Figure 1. Physical configuration and coordinate system. 

 
Continuity equation 

 
6𝑢 + 6𝑣 = 0 (1) 

6𝑥 6𝑦 

 

Momentum equation 
solved numerically by finite difference method. The results of this study will be discussed for the different values of 

the well known parameters and will be shown graphically.

6w + 𝑢 6w + 𝑣 6w = 𝖯 6
2w + 𝜎

𝘍B0
2w 

     

 
(3) 6  = 6𝑇 6𝑋  = 6{𝑇∞+(𝑇w−𝑇∞)�̅�}  6  (𝑥𝑈0) = 𝑈0(𝑇w−𝑇∞) 6�̅� 

6𝑡 6𝑥 6𝑦 6𝑦2 𝜌 6𝑥 6𝑋 6𝑥 6𝑋 6𝑥     𝖯 𝖯 6𝑋 

MHD energy 
equation 6  = 6𝑇 6𝑌  = 6{𝑇∞+(𝑇w−𝑇∞)�̅�}  6  (𝑦𝑈0) = 𝑈0(𝑇w−𝑇∞) 6�̅� 

6𝑦 6𝑌 6𝑦 6𝑌 6𝑦 𝖯 𝖯 6𝑌 
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6𝑇 + 𝑢 6𝑇 + 𝑣 6𝑇 =  н 

 
   

62𝑇 + DmkT 62𝐶 

 
 

(4) 62𝑇 

 
 

 6    6𝑇 

 
 

 

 6     𝑈 (𝑇   −𝑇 

 
 

) 6�̅�  6𝑌 

 

6𝑡 6𝑥 6𝑦 𝜌𝑐𝑝 6𝑦2 CsCp  6𝑦2 = (   )= (  0    w      ∞ ) = 

6𝑦2 6𝑦   6𝑦 6𝑌 𝖯 6𝑌     6𝑦 

Concentration equation 6  (𝑈0(𝑇w−𝑇∞) 6�̅�)  6  (𝑦𝑈0) 

6𝑌 𝖯 6𝑌 6𝑦 𝖯 

6𝐶 + 𝑢 6𝐶 + 𝑣 6𝐶 = 𝐷 
 

   

62𝐶 

 
 

(5) 
𝑈2(𝑇w−𝑇∞) 62�̅� 

 

6𝑡 6𝑥 6𝑦 𝑚 6𝑦2 = 𝖯2 6𝑌2 

With the corresponding initial and boundary conditions are  6𝐶 

 
 

6𝐶 6𝑐 6{𝐶∞+(𝐶w−𝐶∞)𝐶 ̅}  6     𝑡𝑈2 𝑈2(𝐶w−𝐶∞) 6𝐶 

 
  = = ( 0 )= 0  

6𝑡 6𝑐 6𝑡 6𝑐 6𝑡     𝖯 𝖯 6𝑐 

𝑢 = 0, w = 0, 𝑇 = 𝑇w, 𝐶 = 𝐶w at 𝑦 = 0 (6)  
6𝐶 

 
 

= 6𝐶 6𝑋 = 6{𝐶∞+(𝐶w−𝐶∞)𝐶 ̅}  6 (𝑥
𝑈0) = 

 
𝑈0(𝐶w−𝐶∞) 6𝐶 

 

𝑢 = 0, w = 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞ as 𝑦 → ∞ (7) 6𝑥 6𝑋 6𝑥 6𝑋 6𝑥     𝖯 𝖯 6𝑋 

6𝐶 = 6𝐶 6𝑌 = 6{𝐶∞+(𝐶w−𝐶∞)𝐶 ̅}  6  (𝑦𝑈0) = 𝑈0(𝐶w−𝐶∞) 6𝐶 

     

2. Mathematical Formulation 

Since the solutions of the governing equations (1)-
(4) 

6𝑦 

 

A
nd 

6𝑌 6𝑦 6𝑌 6𝑦 𝖯 𝖯 6𝑌 

under the initial (6) and boundary (7) conditions will 
be 

62𝐶 = 6   (6𝐶)= 6   (𝑈0(𝐶w−𝐶∞) 6𝐶 ̅ 
) 6𝑌= 

      

based on the finite difference method it is required to 
make 6𝑦2 6𝑦 6𝑦 6𝑌 𝖯 6𝑌 6𝑦 

the said equations dimensionless. For this purpose, 
now 6  (𝑈0(𝐶w−𝐶∞) 6𝐶 ̅

) 6  (𝑦𝑈0) 

introduce the following dimensionless 
quantities; 

6𝑌 𝖯 6𝑌   6𝑦 𝖯 

𝑈2(𝐶w−𝐶∞) 62𝐶 

𝑥𝑈 𝑦𝑈 𝑢 𝑣 w 𝑡𝑈2 = 0 
2 2 

X=    0, 𝑌=   0, 
U= 

, 
V= 

, 
W= 

, 
𝑟=   0 

𝖯 6𝑌 

𝖯 𝖯 𝑈0 𝑈0 𝑈0 𝖯 Now substitute the values of the above derivatives into 
the 

𝐵 ̅0̅=√𝜇e 𝐵0, �̅�=  −𝑇∞  , 𝐶 ̅=   𝐶−𝐶∞  . equations (1)-(5) and after simplification obtain the 
following 

𝜌 𝑈0 𝑇w−𝑇∞ 𝐶w−𝐶∞ nonlinear coupled partial differential equations interms 
of 

From the above dimensionless variable x= 𝖯𝑋, y =𝖯𝑌, u=   , v=   , w= 𝑈  
W, 𝐵  =𝑈  √ 𝜌 �̅� ̅, 

 
 

  

0 
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= = (
0)

( 
0 ) 

( 0

) 
)

0 𝑈3 

0

)
0

𝜌𝑈2 
0

dimensionless variables  
6𝑈 + 6𝑉 = 0 (8) 

  

𝑈0 𝑈0 
0 0 0 0 0 𝜇e     

0 6𝑋 6𝑌 

T= 𝑇 + (𝑇 − 𝑇 )̅ and C= 𝐶 
+ (𝐶 − 𝐶 )𝐶 ̅. 

6𝑈+ U6𝑈+V6𝑈=   ̅ + 𝐺 
 

   

𝐶 ̅+6
2𝑈 − 𝑀𝑈 (9) 

 
 

∞ w ∞ ∞ w ∞ 6𝑐 6𝑋 6𝑌 𝑟 𝑚 6𝑌2 

Using these relations the following 
derivatives 

6𝖶+ U6𝖶+V6𝖶= 6
2𝖶 + 𝑀W (10) 

 

6𝑢 6𝑢 6𝑐 6(𝑈 𝑈) 6 𝑡𝑈2 𝑈3 6𝑈 6𝑐 6𝑋 6𝑌 6𝑌2 

= = 0 ( 0 )= 0  
2 2

 

  

6𝑡 6𝑐 6𝑡 6𝑐 6𝑡     𝖯   6𝑐 6�̅� 6�̅� 6�̅� 1  6  �̅� 6   

 
6𝑢     6𝑢 6𝑋    6(𝑈0𝑈) 6    𝑥𝑈0 𝑈2 6𝑈 

     

6𝑐+ U
6𝑋+V

6𝑌= 𝑃r 6𝑌2+𝐷𝑢 6𝑌2 (11) 

6𝑥 6𝑋 6𝑥 6𝑋     6𝑥 𝖯   6𝑋 6�̅�+ U6�̅� 
+V6�̅�= 1 62𝐶 

    

(12) 

6𝑢 6𝑢 6𝑌     6(  )  6     𝑦𝑈 𝑈2 6𝑈 6𝑐 6𝑋 6𝑌     𝑆𝑐 6𝑌2 

= = 0 (  0)= 0  

6𝑦 6𝑌 6𝑦 6𝑌 6𝑦 𝖯   6𝑌 Where 

62𝑢 

 
 

6𝑦2 

6 

 
 

6𝑦 

(
6𝑢)= 

6𝑦 

6 

 
 

6𝑌 

 𝑈2 6𝑈 

𝖯 6𝑌 

6𝑌 

 
 

6𝑦 

= 6 

6𝑌 

 𝑈2 6𝑈 

𝖯 6𝑌 

6 

 
 

6𝑦 

(𝑦𝑈0 

𝖯 

 𝑈3  62𝑈 

𝖯2  6𝑌2 

𝐺
𝑟= 

𝖯g(𝑇w−𝑇∞) ( Grashof Number ), 

0 

6w 6w 6𝑐 6(𝑈0𝖶)  6     𝑡𝑈2 𝑈3 6𝖶 ∗ 

= = ( 0 )= 0  𝐺   = 𝖯g𝛽 (𝑇w−𝑇∞) ( Modified Grashof Number ), 
6𝑡 6  6𝑡 6𝑐 6𝑡     𝖯     6     3 

6w= 
6  

6w 6 = 

6  6  

6( 0 )  6  (  0 

6  6    

  
2 6  

  6  

M=    
2 

( Magnetic Parameter), 
0 
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𝑢 
  =    н( w− ∞) ( Dufour Number ). 

  ( w− ∞) 

 
Also the associated initial (6) and boundary (7) conditions 

become 

  = 0, W = 0,  ̅ = 1,   ̅= 1 at   = 0 (13) 

  = 0, W = 0,  ̅ = 0,   ̅= 0 as   = 0 (14) 

 
3. Numerical Solutions 

To solve the second order non-linear
 coupled dimensionless partial differential equations 
(8)-(12) with the 

associated initial and boundary conditions (6) and (7) 
are solved numerically by using explicit finite difference 

method To obtain the difference equations the region of the 
flow is divided into a grid or mesh of lines parallel to X and Y 

axes where X-axis is taken along the plate and Y-axis is 
normal to the plate. Here consider that the plate of height 

Xmax = 100 
i.e. X varies from 0 to 100 and regard     (= 30) as 

corresponding to   → ∞ i.e. Y varies from 0 to 30. There 
are 

  = 200 and   = 200 grid spacings in the X and Y 
directions respectively as showen in Figure 

 

 
Figure 2. Finite difference space grid. 

 
It is assumed that ∆X, ∆  are constant mesh sizes along X   

and Y directions respectively and taken as follows, 
(6U) 

 
 

 
 

(16) 

 

From 

figu
re-3 
see 

th
at 
th

e primary velocity 𝑈 decreases with 
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and the initial and boundary conditions with the finite 
difference scheme are 

Un   = 0,  Wn  = 0, T̅n   = 1, C̅n    = 1 (19) 

increases Schmidt number 𝑆𝑐 . The effect of Prandtal 
number𝑃𝑟is represented by Figure-7. we see that the primary 
velocity 𝑈 decreases rapidly with increasing Prandtal 

i,0 i,0 i,0 i,0 number 𝑃𝑟 . From Figure-10 we observed that the 
primary 

Un   = 0,  Wn  = 0, T̅n   = 0, C̅n    = 0 where 𝐿 → ∞. velocity 𝑈 decreases with increase of magnetic parameter 
𝑀. 

i,L i,L i,L i,L In Figure-12 the primary velocity 𝑈 increases with 
increase 

Here the subscripts i and j designate the grid points with x and 
y coordinates respectively and the superscript n represents a 
value of time, 𝑟 = 𝑛∆𝑟 where 𝑛 = 0,1,2,3, … … … From the initial 
condition (19), the values of 𝑈, W, �̅� 𝑎𝑛𝑑 𝐶 ̅are known at 

𝑟 = 0. During any one time-step, the coefficients Ui,j and 
Vi,j 

appearing in equations (15)-(18) are treated as constants. 
Then at the end of any time-step ∆𝑟, the new temperature T̅′, 
the new concentration C̅′ ,  the  new  velocity U′  and W′  at  all  
interior nodal points may be obtained by successive 
applications of equations (15), (16), (17), (18), are respectively. 
This process is repeated in time and provided the time-step is 
sufficiently small, 

𝑈, W, �̅� 𝑎𝑛𝑑 𝐶 ̅  should  eventually  converge  to  values  
which approximate the steady-state solution of equations 
(8)-(12). 

These converged solutions are shown graphically in Figure- 
3. to Figure-18. 

 
4. Results and Discussion 

In order to discuss the results of this problem. The 
approximate solution are obtain to calculate numerical values 
of the velocity 𝑈, temperature �̅� and concentration 𝐶 ̅within 
the boundary layer for different values of Dufuor number𝐷𝑢, 
magnetic parameter 𝑀 ,   Grashof   number 𝐺𝑟 ,   Prandtal 

number 𝑃𝑟 , Schmidt number 𝑆𝑐 with the fixed value of 
modified Grashof number 𝐺𝑚 . To get the steady state 
solutions, the computations   have   been   carried   out   up 
to 𝑟 = 8. To observe that the results of the computations, 
however, changes rapidly after 𝑟 = 45. The significance of 
cooling problem in nuclear engineering in connection with 
the cooling of reactors,. To investigate the physical 
situation of the problem, the solutions have been 
illustrated of Grashof number  . The effect of modified 
Grashof number 𝐺𝑚 on the primary velocity 𝑈 is represented 
in Figure-14. It is observed that the primary velocity 𝑈 

increases with increase of modified Grashof number 𝐺𝑚. In 
Figure-16 represent the effect of the Dufour number 𝐷𝑢 on 
Primary velocity 𝑈. We observe that the primary velocity 𝑈 
increases when Dufour number 𝐷𝑢 increases. The secondary 
velocity profiles have been displayed in Figure -4, 8, 11, 13, 15 
and 17. From Figure-4 we observe that the secondary velocity 
W decreases with increase of Schmidt number 𝑆𝑐. In Figure-8. 
we observe that the Secondary velocity W decreases with 
increase of Prandti number 𝑃𝑟. The effect of the Megnetic 
parameter 𝑀 on secondary velocity W is represented by 
Figure -11. It is observed that the secondary velocity W 
increases with increase of magnetic parameter 𝑀. From 
Figure-13 represent that the secondary velocity W increases 
when increases of Grashof number 𝐺𝑟. In Figure-15 we see 
that the secondary velocity W increases with increase of 
modified Grashof number  . From Figure- 17 we see that the 
secondary velocity W increases with increase of Dufour 
number  . The temperature profiles have been exhibited in 
Figure - 5, 9 and 18. From Figure-5. we observe that 
Temperature 𝑇 increases when increases of Schmidt number 
𝑆𝑐.  

 

 
 

Figure 3. Primary velocity profile due to change of Schmidt number. 
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Figure 4. Secondary velocity profile due to change of Schmidt number. 

 

Figure 5. Temperature profile due to change of Schmidt number 

 

 

 

Figure 6. Concentration profile due to change of Schmidt number. 

 

 

 

 

 

 

 

Figure 7. Primary velocity profile due to change of Prandtl number. 

 

 

Figure 8. Secondary velocity profile due to change of Prandtl number. 

 

 

Figure 9. Temperature profile due to change of Prandtl number 

 

Figure 10. Primary velocity profile due to change of Magnetic parameter. 

 
 
 

 

5. Conclusions 

In the present research work, the heat and mass transfer 
effects on MHD free convection fluid flow past a vertical 
porous plate. The results are given graphically to illustrate 
the variation of velocity, temperature and concentration with 

different parameters, Important findings of this investigation 
are given below: 

The primary velocity profiles 𝑈 decreases with the increases 
of Schmidt number (𝑆𝑐) Prandtl number(𝑃𝑟 ) and Magnetic 
parameter(𝑀). On the other hand primary velocity profiles 𝑈 
increases with the increases in   Grashof number (𝐺𝑟) , 
modified Grashof number (𝐺𝑚) and Dufour number(𝐷𝑢). The 
Secondary velocity profiles W decreases with the increases of 
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Schmidt number (𝑆𝑐) and Prandtl number(𝑃𝑟 ) as well as 
reverse effect with the increases of Grashof number (𝐺𝑟), 
modified Grashof number (𝐺𝑚) and Dufour number (𝐷𝑢) and 
Magnetic parameter (𝑀). The temperature increases with the 
increases of Schmidt number (𝑆𝑐) and Dufour number(𝐷𝑢). 
Whereas it decreases with an increase of Prandtl number ( ). 
The Concentration 𝐶 decreases with the increases of Schmidt 
number (𝑆𝑐) 
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