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Abstract: The Nonsubsampled Contourlet 
Transform NSCT is a signal processing technique 
that offers a flexible way to decompose signals, 
particularly for analyzing power quality events. 
Here's a breakdown of the key points from your 
description:The NSCT is built on a non-subsampled 
pyramid structure and nonsubsampled directional 
filter banks. This allows for multiscale, 
multidirectional of detail.NSCT is designed to 
provide better frequency selectivity and regularity 
compared to traditional methods like the Contourlet 
Transform. This makes it well-suited for analyzing 
power quality disturbances with varying 
frequencies.The paper proposes a design framework 
based on a mapping approach, which enables fast 
feature extraction from power quality events. This 
reduces the computational complexity of the 
transformation process.The paper introduces a 
signal decomposition method that separates signals 
into oscillatory and transient components using 
theNSCT. Thehigh-frequency subbands of the NSCT 
coefficients are the focus on fusion scheme to 
separate the oscillatory component.Low-frequency 
coefficients are fused by taking the average of the 
corresponding coefficients from the input signal to 
capture the transient signal  
Keywords: Signal processing,Nonsubsampled 
Contourlet Wavelet Transform  (NCT),MCA, 
SALSA, Multi Class support vector machines, power 
quality disturbances 
 
Introduction 

Power quality (PQ) refers to the characteristics of the 
electrical power supply that affect the performance of 
connected electrical and electronic equipment [1]. With 
the proliferation of electronic devices, fast control 
equipment, and renewable energy sources in the power 
system, maintaining a high-quality power supply has 
become increasingly important. PQ disturbances [2] can 
be broadly categorized into two types: transient and 
steady-state disturbances. Transient disturbances are 
short-duration events, such as voltage sags (momentary 
drops in voltage), swells (momentary increases in 

voltage), interruptions (complete loss of voltage), and 
transients (rapid and short-term voltage variations). On 
the other hand, steady-state disturbances are continuous 
issues, such asharmonics (additional frequency 
components on top of the fundamental frequency) and 
voltage fluctuations (small variations in voltage over 
time) [3-9].The integration of renewable energy sources, 
such as solar and wind, can introduce additional 
challenges to power quality due to their intermittent 
nature. Moreover, the presence of various PQ 
disturbances in the power system can lead to 
simultaneous occurrences of two or more disturbances, 
making the detection and mitigation of these issues more 
complex[10-13]. The present paper presents a novel 
Multimodal MIF (Modality Independent Fusion) 
method that is based on the NSCT (Nonsubsampled 
Contourlet Transform) domain. The proposed method 
utilizes a statistical approach to fuse coefficients from 
different subbands in NSCT. This paper introduces a 
new method for Multimodal MIF that takes advantage 
of the NSCT domain. NSCT is a transform used for 
image and signal processing that can effectively capture 
various directional and scale information, making it 
suitable for handling multimodal data. The proposed 
method utilizes the Generalized Gaussian Density to fit 
the marginal distributions of the high-frequency 
coefficients. Generalized Gaussian Density (GGD) is a 
flexible probability distribution that can model a wide 
range of data, making it suitable for various 
applications.  

The feature extraction process plays a critical role as the 
overall recognition accuracy depends not only on the 
choice of the classifier but also on the quality and 
relevance of the features extracted. 

, and shift-invariant signal decomposition.The non-
subsampled version ensures that the signal 
decomposition is shift-invariant, which means it's 
effective at detecting features of power quality 
disturbances across different time shifts.A pyramid 
structure is used for hierarchical representation of the 
signal with multiple scales. This is beneficial for 
capturing features at different levels  
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 Nonsubsampled Contourlet Wavelet Transform -
based Signal Decomposition Technique  

The nonsubsampled pyramids (NSP) and directional 
filter bank (NSDFB) stages make up the NSCT 
decomposition process. The former 
decomposes multiscale, whereas the latter decomposes 
directionally. Each level of the NSP separates picture 
into low- and high-frequency sub bands. NSP generates 
k+1 sub band pictures, one low-frequency and k high-
frequency, with a decomposition level of k. NSDFB 
decomposes NSP high-frequency sub bands at each 
level. For a given sub band, l decomposition directions 
provide 2l directional sub bands with the same size as 
the original picture. After repeatedly decomposing the 
low frequency component, an image is divided into one 
low frequency sub signal and a sequence of high 
frequency directional sub band signal tures (k j=1 2lj), 
where lj is the number of decomposition directions at the 
j scale.Fig. 1 is representing the pyramid structure of 
NCT. 

 
Fig.1: Block diagram of NCT of an input signal x[n] 

using NCT 
 
The NCT algorithm decomposes the input signal into 
subbands using a series of low-pass and high-pass 
filters. Each level of decomposition splits the signal into 
two subbands, representing different frequency ranges. 
The low-pass subband captures the lower frequencies, 
while the high-pass subband contains the higher 
frequencies or details.By applying the NCT recursively 
up to the desired level, a multilevel representation of the 
input signal is obtained. The constraints on α and β, 
along with the proper design of the filters' frequency 
responses, ensure that the decomposition and 
subsequent reconstruction can be performed accurately, 
preserving the signal's characteristics without 
introducing redundancy. 
 
This involves repeatedly applying nonsubsampled filter 
banks to achieve the desired level of decomposition. The 
filters used in the construction satisfy the perfect 

reconstruction condition. This means that after 
decomposition and reconstruction, the output signal is 
nearly identical to the original input signal. To move to 
the next level of decomposition, all filters are upsampled 
by a factor of 2 in both dimensions. This process allows 
for capturing information at finer scales. Filtering with 
the upsampled filters is as complex as filtering with the 
original filters using the 'à trous' algorithm. The 'à trous' 
algorithm is an efficient wavelet decomposition 
technique. The analysis part of the nonsubsampled 
pyramid is cascaded to achieve the multiscale 
decomposition. Cascading involves connecting the 
output of one analysis block to the input of the next, 
creating a series of filters for multiscale decomposition. 
The equivalent filters for a k-th level cascading 
nonsubsampled pyramid are specified, but the exact 
details are not provided in the excerpt. These filters are 
essential for performing the cascading operation 
correctly. 

 The Proposed Signal Fusion Technique 

Fusion of the High Frequency Coefficients: 

High-frequency subbands in an image generally contain 
detailed information like edges, lines, and corners. 
These regions contribute to the fine details and 
structures in the image [33]. But in case of signal  
Different signaling modalities often contain overlapping 
and unique information about the same scene or 
subject.The selection rule aims to capture the most 
important information from source images for effective 
fusion. In this fusion scheme is introduced for high-
frequency subbands.Weight maps, which indicate the 
importance of coefficients, are proposed for guiding the 
fusion process. These weight maps are determined based 
on saliency maps.The Nonsubsampled Contourlet 
Transform (NSCT) coefficients exhibit dependencies 
due to their multiscale and multidirectional nature.The 
dependencies between high-frequency coefficients from 
different NSCT subbands are used to update and 
enhance the coefficients.The proposed process involves 
updating the high-frequency coefficients based on the 
relationships between NSCT subbands.After updating, 
the coefficients are combined using the weight maps, 
which guide the fusion process by assigning different 
levels of importance to different coefficients. 
This fusion approach aims to enhance the fused image 

by capturing both fine details and overall 

complexity.It's important to note that the exact 

implementation of the fusion rule and the specific 

parameters chosen will influence the results. This 

method attempts to strike a balance between preserving 

important details and avoiding artifacts, and its 

effectiveness will depend on the nature of the source 

images and the fusion task. 
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.   Computing the regional standard 

deviation 𝐷ఒ(𝑥, 𝑦) 

  𝐷ఒ(𝑥, 𝑦) 

  =
ඥ∑ 𝜔(𝑚, 𝑛) × [𝐶ఒ(𝑥 + 𝑚, 𝑦 + 𝑛) − 𝑆ఒ(𝑥, 𝑦)]ଶ௠ఢெ,௡ఢே

      

  (1) 

 

Calculating the normalized Shannon entropy  

𝑗𝑠𝑑௟,ఏ,௩(𝑥, 𝑦) =

 ∑ 𝐷௃ௌ
௄
௝ୀଵ ൬𝐶௟,ఏ೔(𝑥, 𝑦), 𝐶௟ିଵ,ఏೕ(𝑥, 𝑦)൰ +𝐷௃ௌ ൬𝐶௟,ఏ೔(𝑥, 𝑦), 𝐶௟ାଵ,ఏೕ(𝑥, 𝑦)൰

     (6) 

 

Further, the horizontal and vertical dependency compo-

nents are normalized, respectively, 

𝑗𝑠𝑑௟,ఏ,௛(𝑥, 𝑦) = ௝௦ௗ೗,ഇ,೓(௫,௬)
௝௦ௗ೗,ഇ,೓(௫,௬)ା௝௦ௗ೗,ഇ,ೡ(௫,௬) , 𝑗𝑠𝑑௟,ఏ,௩(𝑥, 𝑦) =

௝௦ ೗,ഇ,ೡ(௫,௬)
௝௦ௗ೗,ഇ,೓(௫,௬)ା௝௦ௗ೗,ഇ,ೡ(௫,௬)    

   (7) 

Finally, the high frequency NSCT coefficients are 

revised as 

𝐶௟,ఏ (𝑥, 𝑦) =
𝐶௟,ఏ (𝑥, 𝑦)ඥ1 + 𝑗𝑠𝑑௟,ఏ,௛(𝑥, 𝑦)ଶ + 𝑗𝑠𝑑௟,ఏ,௩(𝑥, 𝑦)ଶ 

      

  (8) 

The process of constructing weight maps using 

saliency information and applying a Gaussian filter to 

each high-pass subband. These weight maps play a 

crucial role in guiding the fusion algorithm for 

achieving an informative and balanced fused signal. By 

assigning appropriate weights to different parts of the 

subband coefficients based on their saliency levels, the 

fusion process is enhanced and prioritizes significant 

elements such as edges and corners. 

𝑆௟,ఏ(𝑥, 𝑦) = ห𝐶௟,ఏ(𝑥, 𝑦)ห ∗ 𝑔௥೒,ఏ೒(𝑥, 𝑦)  

      

     (9)  

Where the parameter a is a constant, which tunes the 

sharpness of fused image by adjusting the value of 

parameter; it is set to 1.2 in our experiment. 

Fusion For Low Frequency  

Let 𝐶଴
ఒ(𝑥, 𝑦)denote the low frequency subband coeffi-

cient at location (𝑥, 𝑦); 𝜆 is input image A, B. Finally, 

the fused image can be obtained by 

𝐶଴
ఒ(𝑥, 𝑦) =  ෍ [δ஛𝐶଴

ఒ(𝑥, 𝑦) + 𝜉ఒ𝐶଴
ఒ(𝑥, 𝑦)]

ఒୀ஺,஻

 

High-frequency subbands capture detailed information 

like edges, lines, and corners. The goal of this process 

is to capture salient information from different imaging 

𝐸ఒ(𝑥, 𝑦) = ଵ
|ோ|

∑ ቀ𝐶଴
ఒ(𝑖, 𝑗)ቁ

ଶ
log ቀ𝐶଴

ఒ(𝑖, 𝑗)ቁ
ଶ

௜.௝  

      

     (2) 

 Computing the weights (𝛿ఒ, 𝜉ఒ) of the standard 

deviation𝐷ఒ(𝑥, 𝑦)and the information entropy 

𝐸ఒ(𝑥, 𝑦)respectively, 

𝛿ఒ =
|𝐷ఒ(𝑥, 𝑦)|ఈ

|𝐷஺(𝑥, 𝑦)|ఈ + |𝐷஻(𝑥, 𝑦)|ఈ  ; 

𝜉ఒ = ாഊ(௫,௬)
ாಲ(௫,௬)ାாಳ(௫,௬)    

     modalities and 

enhance the overall fusion performance.Updating of 

the High Frequency Subband Coefficients. First, we 

calculate the horizontal dependencyjsd୪,஘,୦ between 

coefficients with different directions at the same scale 

las 

𝑗𝑠 ௟,ఏ,௛(𝑥, 𝑦) =  ∑ 𝐷௃ௌ
௄
௝ୀଵ.௝#௜ ൬𝐶௟,ఏ೔(𝑥, 𝑦), 𝐶௟,ఏೕ(𝑥, 𝑦)൰

      

     (5)  
 

 Where 𝐾is the total of the subbands at the𝑙th 

scale. 

Then we calculate the vertical dependency 

𝑗𝑠𝑑௜,ఏ,௩between the specified subband's (for instance 

subband𝑖)parents and children 
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Where 𝑔(∙)is a Gaussian low pass filter, whose size is 

(2𝑟௚ + 1) × (2𝑟௚ + 1), and the parameters 𝑟௚and 𝜃௚are 

set to 5. Next, the weight maps are determined by 

comparison of the saliency maps 

 ൫𝑆௟,ఏ
௡ (𝑥, 𝑦), 𝑛 𝜖 [𝐴, 𝐵]൯ 

𝑊௟,ఏ
௡ (𝑥, 𝑦) 

= ቄ1 
0

𝑖𝑓 (𝑆௟,ఏ
௡ (𝑥, 𝑦) = max ቀ𝑆௟,ఏ

஺ (𝑥, 𝑦), 𝑆௟,ఏ
஻ (𝑥, 𝑦)ቁ

otherwise
      

     (10) 

Finally, the fused subband coefficients 𝐶௟,ఏ
ி (𝑥, 𝑦)can be 

obtained by the weighted summation 

𝐶௟,ఏ
ி (𝑥, 𝑦) =  𝑊௟,ఏ

஺ (𝑥, 𝑦)𝐶௟,ఏ
஺ (𝑥, 𝑦) +

𝑊௟,ఏ
஻ (𝑥, 𝑦)𝐶௟,ఏ

஻ (𝑥, 𝑦)    

      (11) 
 Determination of Energy to capture the features 

The challenges associated with evaluating the sparsity 

of wavelet coefficients obtained through the Non-

Subsampled Contourlet Transform (NSCT) 

decomposition. Unlike traditional wavelet transforms, 

NSCT employs a two-channel bandpass filter for 

iterative signal decomposition, resulting in a sequence 

of wavelet coefficients that can vary in length. This 

poses difficulties when using traditional measures like 

Shannon entropy to evaluate sparsity accurately. The 

value called "SAEWSE" to address this issue.  

p (j)i=
ாഊ(௫,௬)/ ୒୨ |୵(୨)

∑ ∑
ಶೕ
ೀ

ቚ௪೔
ೕቚ

ೀ
೔సభ

ೕశభ
ೕసభ

    

 (12)           

SAEWSE = -∑ ∑ 𝑝௜
(௝)𝑙𝑛 𝑝௜

(௝)ேೕ
௜ୀଵ

௃ାଵ
௝ୀଵ   

 (13)     

where Ej, Nj, and w(j) I represent the NSCT energy 

which are represented in equation (11), length of the 

sequence and coefficients of wavelets respectively up to 

of the jth layer.To address this challenge, it appears that 

a different measure called "SAEWSE" (which stands for 

something not mentioned in your text) is introduced. 

This measure might be designed specifically to evaluate 

the sparsity of NSCT coefficients in a way that accounts 

for their unique properties and the variations caused by 

the decomposition process. 

 

y =[y(Jl
s , n), y2(2, n), ··· y(J hs , n)] T∈  R(J hs −Jl s 

+1)×N  (14) 

Ey(j, n)= ||Hilbert(y(j, n))||2,           J ls ≤ j ≤ J hs 15)   

We acquire the frequency domain sequence FE(j, ) by 

performing the M-point discrete Fourier transform 

(DFT) on Ey(j, n), and from this we can derive the power 

spectrum PE(j,) of the layer j signal envelope.PE(j, 

ω)=ிಶ(௝,௪).ிಶ
∗(௝,௪)

ெ     

  (16) 

In this case, the Power Spectrum Kurtosis (PSK) is 

defined as the complex conjugate of the power spectrum 

(FE*(j, ω)). 

PSK(j)=
భ

ಾ/మ
∑ ൣ௉ಶ(௝,௪)ି௉ಶ (ఫ,௪)തതതതതതതതതതതത൧రಾ/మ

೔సభ

ቂ భ
ಾ/మ

∑ ൣ௉ಶ(௝,௪)ି௉ಶ (ఫ,௪)തതതതതതതതതതതത൧మಾ/మ
೔సభ ቃ

మ  

 (17)    

Based on Fig.2, it is observed that the value of 

SAEWAE (presumably an evaluation metric) is the 

lowest among the presented options with respect to 

GCD and JSD. Therefore, in this method, these specific 

values of Q=3 and r=3 are selected as the optimal 

parameter values coefficient plot of signal before and 

after proposed algorithm (b) Adaptive parameter 

optimization for PQ Disturbances as a three-

dimensional curve. we can see the SAEWSE value in 

the two-dimensional grid search space of parameters 

and based on the minimum SAEWSE curve value, we 

can determine the optimal parameters in NCT. 

 Selection of parameters 

The study suggests a technique for splitting a signal into 

its oscillatory and transient parts. Sparse representations 

of these parts are achieved by employing the t𝛿ఒ and 

𝜉ఒvalue in NCT in this method. The oscillatory 

component is represented by the high 𝛿ఒ and 𝜉ఒvalue in 

NCT NCT, while the transient component is modeled by 

the low 𝛿ఒand 𝜉ఒvalue in NCT. Oscillatory and transient 
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components may be effectively separated using 

morphological component analysis (MCA) because to 

the limited coherence between low and high 𝛿ఒ and 

𝜉ఒvalue in NCT. 

In this study, the split augmented Lagrangian shrinkage 

method (SALSA) [30] is used to address the MCA-

related optimization problem. By repeatedly updating 

the oscillatory and transient components, this technique 

makes it easier to decompose the signal. 

The ability to encode distinct frequency and temporal 

characteristics in different subbands allows for a more 

comprehensive representation of signal components. 

This approach efficiently captures and separates 

oscillatory and transient features, and parameter 

selection aims to strike a balance between 

computational efficiency and accurate 

decomposition.The values of 𝛿ఒ and 𝜉ఒvalue in NCT are 

then fine-tuned to achieve the desired frequency 

decomposition.  

If X is the signal then signal is devided into high and low 

oscillatory components. The objective of MCA is to find 

out X1 and X2separately.Where X1 and X2 are the sparse 

representation of the matrix. X1 is sparsely represented 

by NCT1 with JSD. Trnasformation matrix is denoted by 

φ1. Simirly X2 is sparsely represented by NCT2 with 

parameters of different JSD. Trnasformation matrix is 

denoted by φ2. 

𝑋 = 𝑋ଵ + 𝑋ଶ     

      

      (18) 

൛Wଵ
୭୮୲ , Wଶ

୭୮୲ൟ  = arg
୵భ

min
୵మ

 ∥ 𝑊ଵ ∥ଵ +∥ 𝑊ଶ ∥ଵ 

SALSA 

Minimizing the objective function in the context of 

signal decomposition with sparsity constraints is 

discussed here [14-15]. To address these challenges, 

you've chosen to use the Split Augmented Lagrangian 

Shrinkage Algorithm (SALSA), a specialized 

optimization method designed to handle non-smooth 

and constrained optimization problems efficiently. 

SALSA's approach of iteratively updating variables 

while considering constraints makes it suitable for 

solving the optimization problem you've described.The 

underlying principle of the algorithm is the following 

minimization problem. The generic version of the 

unbounded optimization issue described in (14) is as 

follows: 

 

Even when wavelets have the same , their waveforms 

can vary significantly across different subbands. The 𝛿ఒ 

and 𝜉ఒvalue in NCT alone does not determine the 

specific shape or characteristics of the wavelet 

waveform in each subband. Other factors, such as the 

specific subband frequencies and filter characteristics, 

can influence the shape and properties of the wavelet 

waveforms. 

Choise of MotherWavelet 

The provided information suggests that an algorithm 

based on Minimum Description Length (MDL) has been 

utilized to select the appropriate decomposition level 

and mother wavelet for fault voltage signal analysis. 

Table 1 presents the results of the algorithm, indicating 

the MDL values for different levels and wavelets.Based 

on the MDL values shown in Table 1, it is determined 

that the minimum MDL value of -100.19 is achieved at 

level 3 with the Bior 4.4. For the decomposition at level 

3 with the Bior 4.4, the chosen 𝛿ఒ and 𝜉ఒvalue in NCT 

value is 3. These parameter selections are illustrated in 

Fig.3. In this case, the fundamental component with a 

frequency of 50 Hz is of particular importance in 

choosing the appropriate parameters for different power 

quality disturbance signals. It’s important to note that 
the specific details and rationale behind the algorithm, 

MDL computation, wavelet selection, and the impact of 

𝛿ఒ and 𝜉ఒvalue in NCTvalues require further 

information or reference to Table 1 and Fig.4 to provide 

more specific insights. 

 

Algorithm for parameter selection in NCT 
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The selection of the NCT parameters can be performed 

using an algorithm that considers the specific 

requirements and characteristics of the signal being 

processed. Here's a general algorithm for selecting the 

parameters in NCT: 

Define the objectives: Determine the specific objectives 

you want to achieve with NCT. This could be signal 

compression, denoising, feature extraction, or any other 

desired signal processing task. 

Based on the given input signal X(n) and a set of 

candidates r ∈  [rlow :τr : rup], where τr is the step size 
of r, the following iterative procedure can be followed 

to determine the appropriatecombination with the 

maximum score: 

1. Set J = np, where np is the number of main peaks in the 

spectral magnitude of X(n). 

2. Iterate over each candidate value of r from rlow to rup 

with a step size of τr. 

3. For each r value, compute the parameter Q using the 

equation specified in (8). 

4. Use the obtained values of (r, Q, J) to decompose the 

input signal X(n) using the NCT (Time-Varying 

Wavelet Transform) technique. 

5. Compute the SAEWSE for the current (J, Q, r) 

combination using Equation (6). 

6. Repeat steps 3-5 for all candidate r values. 

7. Determine the 𝛿ఒ and 𝜉ఒvalue in NCT combination that 

yields the maximum SAEWSE. 

By following this iterative procedure, you can find the 

appropriate𝛿ఒ and 𝜉ఒvalue in NCT combination that 

maximizes the score, which can be used for further 

analysis or processing of the input signal.The functions 

f1(W) and f2(W) are grid-like structures built in two 

dimensions. The extent of this grids is the same as that 

of the data set. After that, we assign each grid cell a 

U value. All data values "near" this grid point were 

averaged to arrive at this U value. We use this averaged 

knowledge to build the 3D surface. Consequently, the 

variance at individual points on the grid is not displayed 

on the surface map. 

These graphs are helpful in feature extraction because 

they show how a dependent variable, and two 

independent variables are related to one another. By 

plotting f1(W), f2(W) and U we can get the features of 

different power quality events which are  

Kurtogram of different Power Quality Events 

NCT can be extended for Power Quality (PQ) analysis 

by applying it to the analysis of PQ signals. PQ analysis 

involves the assessment of various electrical parameters 

to evaluate the quality and reliability of electric power. 

As per the Fig. 6 it is evedent that each power quality 

events have its own features which can be extracted by 

the propsedmeythodology. The SpectrulKurtogram 

(SK) of each events determine its frequency distribution 

at different level of its decomposition. As per the binary 

tree[32] decomposition of the SK determine the 

signature charecteristics of all type of PQ events. 

 Classifier 

The classes are labeled as C 

F1-voltage fluctuation 

F2-voltage fluctuation with harmonics 

F3 – voltage fluctuation with transient,  

F4 – voltage interruption, C5 – sag 

F6 – swell,  

F7 – harmonics, 

F8 – oscillatory transients,  

F9 – notch,  

F10 – spike,  

F11 – sag with harmonics,  

F12 – swell with harmonics,  

F13 – sag with transient  

F14 – swell with transient 

 Multi-Class SVM Classifier 
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SVM was developed by Vapnik et al. and is grounded in 

statistical learning theory, particularly Vapnik-

Chervonenkis theory. This theory deals with the 

capacity of a learning algorithm to generalize from the 

training data to unseen data, which is crucial for 

effective machine learning. VM is effective in dealing 

with linearly inseparable input data by mapping it to a 

higher-dimensional feature space. This nonlinear 

feature mapping is achieved using a kernel function, 

denoted as K(ui, uj), which transforms the original data 

points into a space where they can be linearly 

separated.In the high-dimensional feature space, SVM 

constructs a linear hyperplane that separates the data 

points belonging to different classes. The goal is to find 

the optimal hyperplane that maximizes the margin 

between the classes. The margin is the distance between 

the optimal hyperplane and the data points closest to it, 

known as the bounding planes. By finding the optimal 

hyperplane with a maximum margin, SVM aims to 

minimize the chances of misclassification. A larger 

margin allows for better generalization and improves the 

classifier’s ability to classify unseen data accurately. 
The expression calculates the ‘centres of mass’ for the 

two sets of points in N-dimensional space. Let’s break 
down the computation for both sets: 

1. For Set A: The set A consists of K points in N-

dimensional space: {a1, a2, ..., ak}. To find the ‘centre 
of mass’ for this set, we calculate the average of all the 
points in the set. 

Centre of Mass for Set A (A_mean): A_mean = 
ଵ
௄ × ∑ 𝑎௜ 

(for i= 1 to K) 

Here, ∑ 𝑎௜represents the summation of all points in Set 

A. 

2. For Set B: The set B consists of S points in N-

dimensional space: {b1, b2, ..., bs}. To find the ‘centre 
of mass’ for this set, we calculate the average of all the 
points in the set. 

Centre of Mass for Set B (B_mean): B_mean = 
ଵ
ௌ × ∑ 𝑏௜ 

(for i= 1 to K) 

Here, ∑ 𝑏௜represents the summation of all points in Set 

B. 

These expressions represent the centroid or ‘centre of 
mass’ of each set, which gives an approximate central 
point for the respective set of points in N-dimensional 

space. 

Inding a hyperplane that separates the two sets of points 

in N-dimensional space. Let’s summarize the steps: 

1. Compute the Centres of Mass: Calculate the ‘centres 
of mass’ for both sets of points. For Set A with K points 
{ai}, the centre of mass is A, and for Set B with S points 

{bi}, the centre of mass is B. 

2. Compute the Mid-Point: Find the mid-point between 

the two centres of mass, which will serve as a point on 

the hyperplane. This point is denoted as M. 

3. Compute the Normal Vector: Calculate the vector C 

by subtracting B from A. This vector will serve as the 

normal vector to the hyperplane. 

4. Normalize the Normal Vector: To ensure that the 

normal vector is a unit vector, normalize it by dividing 

it by its magnitude. The normalized vector is denoted as 

n^. 

5. Find a Basis for the Hyperplane: To represent points 

on the hyperplane, you need N-1 orthogonal vectors that 

lie in the (N-1)-dimensional hyperplane. These vectors 

can be obtained using a Gram-Schmidt type process, 

starting with a trivial basis and ensuring that each new 

vector is orthogonal to all the previous ones and 

orthogonal to the normalized normal vector, n^. 

6. Represent Points on the Hyperplane: Any point on the 

hyperplane can be represented by N-1 coordinates αi 
(for I = 1 to N-1). These coordinates correspond to a 

point in the original N-dimensional space and can be 

calculated using the basis vectors obtained in the 

previous step. 

The final expression for a point q on the hyperplane is 

given by: q = Σ(αj ×vj) + M 

Where Σ denotes summation over j = 1 to N-1, and vj 

represents the N-1 basis vectors obtained using the 
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Gram-Schmidt process. The point q lies on the N-

dimensional hyperplane defined by the two sets of 

points A and B in N-dimensional space. 

 

 The feature selection and parameter optimization 

approach using SMA-SVM 

SVM classifier accuracy and computation 

efficiency may be enhanced by minimizing the amount 

of features included in the model and by adhering to 

strict accuracy requirements during fitness function 

design. In other words, the fitness value increases as the 

number of features decreases and the classifier’s 
classification accuracy improves [27]. In this research, 

we build the chromosomal fitness function using the 

weighted classification accuracy and weighted features 

of SVM, as given in the formula (9).  

The proposed SMA-based technique and the tried-

and-true Grid methodology 

Our procedures involve the development of two 

object functions: the first characterizes the performance 

of the support vector machine (SVM) in classifying 

data, and the second characterizes how to choose 

features using the Slime MouldAlgorithm(SMA). 

The fitness function incorporates a weighted 

combination of the two criteria. The user is able to adjust 

the weight. 

Fitness=WA×SVM_Accuracy+WF×൫∑ 𝐶௜ ×௡௙
௜ୀଵ

𝐹௜൯ିଵ
 

WA= Accuracy weight of SVM classification 

SVM_Accuracy=Classification Accuracy 

WF= Weight of number of features 

Ci= Cost of the feature i 

Fi= ‘1’ represents that feature i is selected; ‘0’ 
represents that feature i is not selected 

Li Shimin et al. proposed the SMA which has been 

inspired from the behavioural aspect of slime mould 

[27]. In the nature, the slime mould detects the food and 

thereafter encircles it and eventually digest it by 

releasing enzymes. The properties of slime mould may 

be mathematically expressed into three steps: seeking 

food, encapsulating food, and oscillating, which can be 

represented as follows: 

Approach food 

Decision Tree classifier 

Based on the provided information, the paper uses a 

Multiclass Support Vector Machine (MSVM) classifier 

to create an initial rule-based decision tree for 

classifying power quality (PQ) disturbances. The 

construction of the decision tree is based on the 

standards and definitions of PQ disturbances as 

referenced in [1] and [30]. These standards likely 

provide guidelines and criteria for categorizing different 

types of PQ disturbances. 

Once the initial decision tree is constructed, it undergoes 

a refinement process based on the analysis of training 

patterns. This refinement process aims to improve the 

accuracy and performance of the decision tree classifier. 

The specific details of the refinement process might 

involve pruning, splitting nodes, or other techniques to 

optimize the decision tree structure for better 

classification. 

As a result of this refinement, the paper claims to 

achieve an optimal decision tree, which is efficient in 

classifying eight single PQ disturbances labeled as F1 

and C4 to F10. The PQ disturbances are likely 

categorized into different classes based on the specific 

types and characteristics of each disturbance.Figure8 in 

the referenced document is expected to show the 

structure or visualization of this optimal decision tree. 

The figure might illustrate the branching and decision-

making process of the tree, showing how the classifier 

distinguishes and assigns incoming data patterns to 

different classes of PQ disturbances.Overall, the 

proposed approach seems to integrate the NCT-based 

feature extraction with the MSVM classifier and an 

optimized decision tree to achieve accurate and efficient 

classification of various PQ disturbances. The use of 

standardized definitions and a refinement process helps 

enhance the performance of the classifier, making it 

suitable for real-world power quality analysis.To gain a 

deeper understanding of the methodology and results, 

referring to the specific referenced documents [1], [30], 
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and [31] would provide more detailed insights into the 

standards used, the decision tree refinement process, and 

the visualization of the optimal decision tree structure  

 Result Analysis 

A total of 5000 signals were collected for this study, 
with 300 representing each of the 14 power quality (PQ) 
disturbances and 800 serving as test signals. The 
disturbance signals are realistic in that they include 
fundamental frequency fluctuations of 0.2 Hz and 
variable phase angles. Signals are generated in 
MATLAB using standards and specifications [25, 30] to 
guarantee conformity with industry norms.nA 6 kHz 
sampling rate and a 0.2s sliding window are used to 
capture each time-varying waveform. To evaluate the 
robustness of the proposed approach against noise 
interference, the produced signals are contaminated with 
noise. From -20 dB to -50 dB, the signal-to-noise ratio 
(SNR) accommodates a range of background noise 
densities.For each category of PQ disturbances, the 
dataset is split in half, with one half used for training and 
the other for validation. For uniform analysis, the input 
signals are normalized to 1 per unit (pu).Current signals 
with harmonics, interharmonics, transients, and voltage 
disturbances are the focus of this research.A significant 
factor in the assessment is frequency-related distortions, 
which are prevalent noise sources in modern 
communications.Accuracyj = CNj TNj×100 (19) 

Where CNj is the number of signals in class j that were 
successfully identified and TNj is the total number of test 
signals in class j. 

Identification of Power Quality Disturbances 

A final feature vector including T1, T2, and T3 is 
supplied as input to the first MSVM for classification of 
3 disturbances (F1 - C3) in the instance of voltage 
fluctuation signals.Figure 8 shows a scatter plot of these 
PQ disturbances in feature space, demonstrating that 
they can be reliably differentiated from one another 
regardless of the features used. Therefore, it is not 
surprising that the first MSVM's classification accuracy 
is also 100%. In the absence of any other low-frequency 
Using all five characteristics as inputs, the second 
MSVM is picked for interharmonics. T1, T3, and T4 
feature space scatter plot of 14 PQ disturbances is In 
order to see the progression of disturbances clearly, a 
logarithmic scale is used for the graphic. The graphic 
clearly shows how the interruption, harmonics, and 
transients may be isolated from one another. When 
compared in these three dimensions, notches and spikes 
reveal striking similarities.As a result, they share the 
same set of features indistinguishably. Also, swell, swell 
with harmonics, and swell with transient may  

be thought of as a group because their shared TF4 
characteristic is so similar. Sag, sag with harmonics, and 
sag with transients are all distributed along the TF4 axis 
since they all have the same sag depth of 0.1 to 0.9 pu. 

For the experimental verification of the 
proposed method in hardware platform, the authors 
have fed the  bus distribution system in the RTDS 
system. The considered model is simulated in PSimand 
the simulation have been carried out by utilizing Opal-
RT RTS OP5600 chassis with RT lab form of 11.X. 
Voltage signals consequently produced by Opal-RT 
real-time test system, have been sent to IO cards 
ML605 is used to gather the 
required information.Finally, an OROS-34 data 
acquisition card (DAQ) samples a current signal from a 
laboratory setup at 12.8 kHz, as illustrated in Fig. 10, 
and the suggested approach is evaluated on this signal. 
The scene opens with a mobile phone and laptop being 
charged, followed by the activation of a personal 
computer. This load change resulted in a transient 
lasting for around 1.6 ms with an intensity about three 
times that of the signal amplitude.  

 Conclusions 

The proposed automatic technique for recognizing 
Power Quality (PQ) disturbances presents a 
comprehensive approach that combines various 
advanced techniques to achieve accurate and efficient 
detection and classification. Here are the key points that 
enhance the recognition capability of PQ disturbances. 
The NCT is used to extract the actual fundamental 
frequency component from the input signal. This step 
ensures accurate decomposition and isolation of the 
fundamental frequency, which is vital for distinguishing 
different types of PQ disturbances. By focusing on the 
fundamental frequency component, the method can 
effectively separate it from other harmonics and 
interharmonics.. 

REFERENCES  

[6] R. C. Dugan et al., Electrical Power Systems 
Quality. New York, NY, USA: McGraw-Hill, 2012.  

[7] J. V. Milanovic et al., “International industry 
practice on power-quality monitoring,” IEEE Trans. 
Power Del., vol. 29, no. 2, pp. 934–941, Apr. 2014. 

 [8] M. Kezunovic and Y. Liao, “A novel software 
implementation concept for power quality study,” IEEE 
Trans. Power Del., vol. 17, no. 2, pp. 544–549, Apr. 
2002.  

 [9] M. A. S. Masoum, S. Jamali, and N. Ghaffarzadeh, 
“Detection and classification of power quality 
disturbances using discrete wavelet transform and 



TECHNOINSIGHT • January-June • Volume 15 • Issue 1  

 
32 

wavelet networks,” IET Sci. Meas. Technol., vol. 4, no. 
4, pp. 193–205, Jul. 2010.  

[10] P. K. Ray, N. Kishor, and S. R. Mohanty, 
“Islanding and power quality disturbance detection in 
grid-connected hybrid power system using wavelet and 
S-transform,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 
1082–1094, Sep. 2012.  

[11] S. He, K. Li, and M. Zhang, “A real-time power 
quality disturbances classification using hybrid method 
based on S-transform and dynamics,” IEEE Trans. 
Instrum. Meas., vol. 62, no. 9, pp. 2465–2475, Sep. 
2013.  

[12] S. Mishra, C. N. Bhende, and B. K. Panigrahi, 
“Detection and classification of power quality 
disturbances using S-transform and probabilistic neural 
network,” IEEE Trans. Power Del., vol. 23, no. 1, pp. 
280–287, Jan. 2008.  

[1] S. Shukla, S. Mishra, and B. Singh, “Empirical-
mode decomposition with Hilbert transform for 
power-quality assessment,” IEEE Trans. Power 
Del., vol. 24, no. 4, pp. 2159–2165, Oct. 2009. 

[2] A. Abdelsalam, A. A. Eldesouky, and A. A. 
Sallam, “Characterization of power quality 
disturbances using hybrid technique of linear 
Kalman filter and fuzzy-expert system,” Elect. 
Power Syst. Res., vol. 83, no. 1, pp. 41–50, 2012. 

[3] Bracale, P. Caramia, and G. Carpinelli, “A new, 
sliding-window Prony and DFT scheme for the 
calculation of power quality indices in the 
presence of non-stationary disturbance 
waveforms,” Int. J. Emerg. Elect. Power Syst., 
vol. 13, no. 5, Dec. 2012.  

[4] Bracale, G. Carpinelli, I. Y.-H. Gu, and M. H. J. 
Bollen, “A new joint sliding-window ESPRIT 
and DFT scheme for waveform distortion 
assessment in power systems,” Elect. Power Syst. 
Res., vol. 88, pp. 112–120, Jul. 2012. 

[5] W. Chang and C.-I. Chen, “Measurement 
techniques for stationary and time-varying 
harmonics,” in Proc. IEEE PES Gen. Meeting, 
Minneapolis, MN, USA, 2010, pp. 1–5.  

 
 
 


