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Abstract  

We propose here a quantum hoop conjecture which states: the de Broglie wavelength of a quantum system cannot be 
arbitrarily small; it must be larger than the characterized Schwarzschild radius of the quantum system. Based on this 
conjecture, we find an upper bound for the wave number (or the momentum) of a particle, which offers a natural cutoff 
for the vacuum energy of a scalar field. 

Introduction 

In the past years, a lot of independent cosmological 
observations, such as supernova (SN) Ia at high red shift 
[1,2], the cosmic microwave background (CMB) 
anisotropy [3,4], and large-scale structure [5], have 
confirmed that the Universe is undergoing an 
accelerated expansion. In the framework of general 
relativity, an unknown energy component, usually 
called dark energy, has to be introduced to explain this 
phenomenon. The simplest and most theoretically 
appealing scenario of dark energy is the vacuum energy 
which is about qovac  ð103 eVÞ 4 ¼ 108 ergs=cm3 
matched from observational data. However, this model 
is confronted with very difficult problem–cosmological 
constant problem [6–10] (may suffer from age problem 
as well [11]). To briefly illustrate this issue, we consider, 
for example, the vacuum energy density of a scalar field. 
It is well known that the total vacuum energy density of 
a scalar field with mass m is quartically divergent in the 
ultraviolet (UV) 

 

A usually used regularization for this divergence is to 
artificially take a UV cutoff. But if we take different UV 
cutoffs, such as electroweak scale, grand unification 
scale, or Planck scale, we can get different values of  

 

vacuum energy density. Furthermore the differences 
between these values are huge, see for example, taking 
electroweak scale . The ratio of theoretical to 
observational value of the vacuum energy ranges from 
1056 to 10120. This is the well known cosmological 
constant problem [6–10]. Which scale we should take is 
still an open problem? Can we find a UV cutoff from 
fundamental laws of physics? This is the major issue we 
will consider in this letter. Here, combining with 
quantum and black hole physics, we find an upper bound 
for the wave number of a quantum particle, which gives 
a natural cutoff for the vacuum energy of a scalar field. 

Upper bound for wave number and a natural 
cutoff for vacuum energy 

For a quantum particle with mass m, the de Broglie 
relation reads 𝐸 = ℏ𝜔, p =ℏk. According to the mass-
energy relation in special relativity, the total energy of a 
particle is 𝐸 =  𝑝 𝑐 + 𝑚 𝑐 . Combining the de 
Broglie relation and the mass-energy relation, then we 
have 𝐸 = ℎ 𝑘 𝑐 +  𝑚 𝑐  

This equation indicates that E→ ∞ 𝑓𝑜𝑟 𝑘 → ∞. A 
natural question rises: is this result reasonable? In other 

words,w=√𝑘 𝑐 + √𝑚 𝑐  q , the question can also be 
stated as: can a particle oscillate arbitrarily fast (or, can 
the de Broglie wavelength of a particle be arbitrarily 
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small)? If we take into account the effect of gravitation, 
the answer may be not. Think of black hole physics, a 
system with total energy E has an effective mass E=c2, 
so it will be characterized with a Schwarzschild radius 
which is given by 

 

The hoop conjecture in black hole physics states: if 
matter is enclosed in sufficiently small region, then the 
system should collapse to a black hole [12,13]. Similar 
assumptions were also suggested in [14–16]: for 
example, it argued that the energy of a system of size L 
must have an upper bound not to collapse into a black 
hole [14]. Here we generalize the hoop conjecture to the 
quantum case: the de Broglie wavelength of a quantum 
system cannot be arbitrarily small, it should be larger 
than the characterized Schwarzschild radius of the 
quantum system. This can be called quantum hoop 
conjecture. This quantum hoop conjecture can get 
supports from earlier works in literature. Possible 
connection between gravitation and the fundamental 
length was discussed in [17]. From quantum mechanics 
and classical general relativity, it was shown in [18,19] 
that any primitive probe or target used in an experiment 
must be larger than the Planck length, which implies a 
device independent limit on possible position 
measurements. Researches from string theory, black 
hole physics, and quantum gravity also predict that there 
exists a minimum measurable length scale which is 
approximately equivalent to the Planck length lp [20–
24]. Based on these researches, we can conclude that the 
de Broglie wavelength of any quantum system must not 
be less than the minimum length scale. This conclusion 
is consistent with the quantum hoop conjecture 
proposed here: the de Broglie wavelength of a quantum 
system should be larger than its characterized 
Schwarzschild radius. In [25], a quantum hoop 
conjecture was also suggested by constructing the 
horizon wave-function for quantum mechanical states 
representing two highly boosted non-interacting 
particles, which is different from the conjecture we 
proposed here. The quantum hoop conjecture suggested 
here provides: k >rc, which gives an upper bound for the 
wave number 

 

It is easy to get 

 

where  p is the Planck length. This bound 
only holds in the observer’s reference frame. Bound (5) 
also gives an upper limit for the momentum of the 

particle:  Obviously, the wave number of a 
massive particle is less than that of a massless particle. 
As an application, we apply the bound for the wave 
number (5) to the vacuum energy of a scalar field. For a 
quantum particle of a scalar field, there are three 
freedoms for oscillation. 

So we have 

 

which offers a natural cutoff for the vacuum energy of a 
scalar field. 

 

For r k>m integration (6) is approximatively equivalent 
to 3h=ð16cl4 pÞ which is close to the value obtained by 
taking the Planck scale cutoff. Also based on black hole 
physics, a cutoff for vacuum energy of a scalar field was 
found in [26]. 

Conclusions and discussions 

 In this letter, we suggested a quantum hoop conjecture: 
the de Broglie wavelength of a quantum system cannot 
be arbitrarily small, it must be larger than the 
characterized Schwarzschild radius of the quantum 
system. This conjecture gives an upper bound for the 
wave number or the momentum of the quantum system. 
For application, we found a natural cutoff for the 
vacuum energy of a scalar field. Appendix A. 
Supplementary data Supplementary data associated with 
this article can be found, in the online version, 
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